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DECISIVE ASPECTS IN THE EVOLUTION OF
MICROPROCESSORS
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The incessant demand for higher performance has provoked a dramatic evolution
of the  microarchitecture of high performance microprocessors.  In this paper we focus
on major architectural developments which were introduced for a more effective
utilization of instruction level parallelism (ILP) in commercial, performance oriented
microprocessors.  We show that designers increased the throughput of the
microarchitecture at the instruction level basically by the subsequent introduction of
temporal, issue and intra-instruction parallelism in such a way that exploiting
parallelism along one dimension gave rise to the introduction of parallelism along
another dimension.  Moreover, the debut of each basic technique used to introduce
parallel operation along a certain dimension inevitably called for the introduction of
further innovative techniques to avoid processing bottlenecks that arise. Pertinent
relationships constitute an underlying logical framework  for the fascinating evolution
of microarchitectures, which is presented in our paper.

Keywords- Processor performance, microarchitecture, ILP, temporal-parallelism,
issue-parallelism, intra-instruction parallelism

I. INTRODUCTION

Since the birth of microprocessors in 1971 the IC industry has succeeded in
maintaining an incredibly rapid increase in performance. Figure 1 reviews how integer
performance of the Intel family of microprocessors, for example, has been raised over
the last 20 years [1], [2].  Given in terms of SPECint92, the performance has increased
by the astonishingly large rate of approximately two orders of magnitude per decade.
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Figure 1: Increase over time of the relative integer performance of the Intel x86 processors

This impressive development and all the innovative techniques that were necessary
to achieve it have inspired a number of overview papers [3] - [7]. These reviews
emphasized either the techniques introduced or the quantitative aspects of the evolution.
In contrast, our paper addresses the logical aspects, i.e. the incentives and implications
of the major steps in the evolution of microprocessors.

Recently, as the techniques used to exploit available ILP mature the gap between
available and exploited ILP is narrowing.  This gives rise to developments basically in
two major directions.  (a) The first approach is to utilize ILP more aggressively.  This is
achieved by means of more powerful optimizing compilers and innovative techniques as
discussed in section V.E. (b) The other current trend is to utilize parallelism at a level
higher than the instruction level, i.e. at the thread or process level.  This approach is
marked by multiscalar processors [8], [9], trace processors [10] - [12], symmetrical
multithreading (SMT) [13], [14] and chip multiprocessing (CMP) [15], [16].  In our
paper we concentrate on the progress achieved in the first of these two areas.  We
explore in depth the utilization of instruction level parallelism (ILP) in commercial high
performance microprocessors that are available on the market.

Our discussion begins in Section II with the reinterpretation of the notion of absolute
processor performance.  Our definition is aimed at considering the number of operations
rather than the number of instructions executed by the processor per second.  Based on
this and on an assumed model of processor operation, we then identify the main
dimensions of processor performance.  In subsequent Sections III – VI we discuss
feasible approaches to increase processor performance along each of the main
dimensions.  From these, we point out those basic techniques, which have become part
of the mainstream evolution of microprocessors.  We also identify the implications of
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their introduction by highlighting resulting potential bottlenecks and the techniques
brought into use to cope with them.  Section VII summarizes the main steps of the
evolution of the microarchitecture of high performance microprocessors, followed by
Section VIII which sums up the logical aspects of this evolution.

II. THE DESIGN SPACE OF INCREASING PROCESSOR
PERFORMANCE

Today’s industry standard benchmarks, including the SPEC benchmark suite [17] -
[19], Ziff-Davis’s Winstone [20] and CPUmark ratings [21] and BABCo’s SYSmark
scores [22], are all relative performance measures.  This means that they give an
indication of how fast a processor will run a set of applications under given conditions
in comparison to a reference installation.  These benchmarks are commonly used for
performance comparisons of processors, in processor presentations and in articles
discussing the quantitative aspects of their evolution.

We note that computer manufacturers typically offer three product classes, (i)
expensive high performance models, (ii) basic models emphasizing both cost and
performance, and finally (iii) low cost models preferring cost over performance.  For
instance, Intel’s Xeon line exemplifies high performance models, the company’s
Klamath line represents basic models, whereas their Celeron processors are low cost
models. High performance models are obviously expensive, since all processor and
system components should provide a high enough throughput, whereas low cost
systems save on cost by using less ambitious and less expensive parts or subsystems.

In addition to the relative performance measures absolute performance measures are
also used.  Absolute processor performance (PP) is usually interpreted as the average
number of instructions executed by the processor per second. Nowadays, this is
typically given in units such as MIPS (Million Instructions Per Second) or GIPS (Giga
Instructions Per Second).  Earlier synthetic benchmarks, like Whetstone [23] or
Drystone [24], were also given as absolute measures.

PP is clearly a product of the clock frequency (fC), and the average number of
instructions executed per clock cycle, called the throughput (TIPC).  Figure 2 illustrates
TIPC as the execution width of the processor (P).

Program

add   r1,r2,r3

mul   r4,r5,r6

[MIPS,etc]P   =  f   * TIPCC

: Throughput, interpreted as the average number ofIPCT

(Processor)P

P

P

 

IPCT

(1)

instructions executed per cycle by the processor (P)

Figure 2: Usual, instruction-based interpretation of the notion of absolute processor performance
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The processor’s clock frequency indicates only a performance potential.  Actual
processor (or system) performance is further determined by the efficiency (i.e.
throughput) of the microarchitecture and by the characteristics of the application
processed. “Weak” components in the processor or in the whole installation, such as an
inadequate branch handling subsystem of the microarchitecture or a long latency cache,
may strongly impede performance.

Absolute measures are appropriate to use when the maximum performance of
processors or the performance increase within particular processor lines is discussed. As
our paper focuses on the evolution of microarchitectures from a performance
perspective, we will apply the notion of absolute processor performance. However, we
emphasize that absolute performance metrics are not suitable for comparing different
processor lines whose Instruction Set Architectures (ISA) differ.  This is because
instructions from different ISAs do not necessarily accomplish the same amount of
computation. For making performance comparisons in these cases, relative performance
measures are needed.

As the use of multi-operation instructions has become a major trend in the recent
evolution of microarchitectures, it is appropriate to reinterpret the notion of absolute
processor performance by focusing on the number of operations rather than on the
number of instructions executed per second. In this way, the notion of absolute
processor performance more aptly reflects the work actually done. Here, again the
absolute processor performance (denoted in this case by PPO) can be given as the
product of the clock frequency (fC) and the throughput (TOPC), which is now interpreted
as the average number of operations executed per cycle (see Figure 3).

: Throughput, interpreted as the averageOPCT

[MOPS,etc]P      =  f    *  T OPCCPO

P

number of 

OPCT (2)

operations executed per cycle

Figure 3: Operations-based interpretation of the notion of absolute processor performance

As shown in the Annex, TOPC  can be expressed by the operational parameters of the
microarchitecture as follows:

n =
OPC *

nn1/n
CPI ILP OPI* (3)T =OPC

Temporal
parallelism 

Issue
parallelism

Intra-instruction
parallelism

where
n CPI is the average number of cycles between subsequent time when instructions are

issued. Here we understand instruction issue as emanating instructions from
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the instruction cache/decoder subsystem for further processing, as detailed in
Section V C. We note that in the literature this activity is often designated as
dispatching instructions.     In other words, n CPI is the average length of the
issue intervals in cycles.

For a traditional microprogrammed processor n CPI !! 1, whereas for a
pipelined processor n CPI   ~ 1. n CPI  reflects the temporal parallelism of
instruction processing.

Q ILP is the average number of instructions issued per issue interval. For a scalar

processor n ILP  = 1, whereas for a superscalar one n ILP ! 1. This term
indicates the issue parallelism of the processor.  Finally,

n OPI shows the average number of operations per instruction, which reveals the
intra-instruction parallelism.  In the case of a traditional ISA n OPI = 1. Here
we note that unlike RISC instructions operational CISC instructions allow to
refer to memory operands as well. Consequently CISC instructions carry out on
the average more complex operations than RISC instructions. For VLIW (Very

Large Instruction Word) architectures n OPI !! 1.
Based on this model, processor performance PPO can be reinterpreted as:

P
=

f 1/n
*

nCPO CPI ILP OPI* n
* (4)

Clock
IUHTXHQF\

7HPSRUDO
SDUDOOHOLVP

,VVXH
SDUDOOHOLVP

,QWUD�LQVWUXFWLRQ
SDUDOOHOLVP

Here the clock frequency of the processor (fc) depends first of all on the
sophistication of the IC technology but also on the implementation of the
microarchitecture. In pipelined designs the clock period and thus, the clock frequency,
is determined by the propagation delay of the longest path in the pipeline stages.  This
equals the product of the gate delay and the number of gates in the longest path of any
pipeline stage.  The gate delay depends mainly on the line width of the IC technology
used, whereas the length of the longest path depends on the layout of the
microarchitecture.  Very high clock rates presume very deeply pipelined designs i.e.
pipelines with typically ten to twenty stages.

The remaining three components of processor performance, i.e. the temporal, issue
and the intra-instruction parallelism, are determined mainly by the efficiency of the
processor level architecture, that is by both the ISA and the microarchitecture of the
processor (see Figure 4).

PPO nCPI
-
____1

* ILPn- OPIn-*

Sophistication of the

=                f            *

Efficiency of the processor-level

c

architecture
(ISA/microarchitecture)

technology

Figure 4: Constituents of processor performance
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Equation (4) provides an appealing framework for a retrospective discussion of the
major steps in increasing processor performance. According to equation (4) the main
possibilities for boosting processor performance are to increase clock frequency, or to
introduce and increase temporal, issue and intra-instruction parallelism, as summarized
in Figure 5.

P = * *
1

n CPI

_ *
_
n OPI

_
n ILPPO fc

Raising
the clock
frequency

increasing
of temporal
parallelism

increasing increasing

parallelism parallelism
of issue of intra-instruction

Introduction/ Introduction/ Introduction/

Figure 5: Main possibilities to increase processor performance
In the subsequent sections we address each of these possibilities individually.

III. INCREASING THE CLOCK FREQUENCY AND ITS
RAMIFICATIONS

A. The Rate of Increasing the Clock Frequency of Microprocessors

Figure 6 illustrates the phenomenal increase in the clock frequency of the Intel x86
line of processors [1] over the past two decades.
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Figure 6: Historical increase in the clock frequency of the Intel x86 line of processors

As Figure 6 indicates, the clock frequency was raised until the middle of the 1990s
by approximately an order of magnitude per decade, and subsequently by about two
orders of magnitude per decade. This massive frequency boost was achieved mainly by
a continuous scaling down of the chips through improved IC process technology, by
using longer pipelines in the processors and by improving the circuit layouts.

Since processor performance may be increased either by raising the clock frequency
or by increasing the efficiency of the microarchitecture or both (see Figure 4), Intel’s
example of how it increased the efficiency of the microarchitecture in its processors is
very telling.
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As Figure 7 shows, the overall efficiency (cycle by cycle performance) of the Intel
processors [1] was raised between 1985 and 1995 by about an order of magnitude. In
this decade both the clock frequency and the efficiency of the microarchitecture were
increased approximately 10 times per decade, which resulted in an approximately two
order of magnitude performance boost. But after the introduction of the Pentium Pro,
Intel continued to use basically the same processor core in both its Pentium II and
Pentium III processors1. The enhancements introduced, including multimedia (MM) and
3D support, higher cache capacity, increased bus frequency etc, made only a marginal
contribution to the efficiency of the microarchitecture for general purpose applications,
as reflected in the SPEC benchmark figures. Intel’s design philosophy prefers now the
increase of clock frequency over microarchitecture efficiency. This decision may stem
from the view often emphasized by computer resellers that PC buyers usually go for
clock rates and benchmark metrics not for efficiency metrics.

B. Implications of Increasing the Clock Frequency

In order to avoid bottlenecks in the system level architecture both raising the clock
frequency of the processor and increasing the efficiency of the microarchitecture in terms
of executing more instructions per cycle enforce designers to enhance both the processor
bus (PC bus, front-end bus) and the memory subsystem.

1) Enhancing the processor bus: For higher clock frequencies and for more effective
microarchitectures also the bandwidth of the processor bus needs to be increased for
obvious reasons. This requirement has driven the evolution of processor bus standards. The
progress achieved may be tracked by considering how the data width and the maximum
clock frequency of major processor bus standards have evolved (see Figure 8).

                                                          
1 In order to avoid a large number of multiple references to superscalar processors in the text and in the figures,
we give all references to superscalars only in Figure 24.
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Figure 8: Evolution of processor bus standards

As depicted in the figure, the standardized 8-bit wide AT-bus, knows as the ISA bus
(International Standard Architecture) [25], was first extended to provide 32-bit data
width, called the EISA bus [26]. The ISA bus was subsequently replaced by the PCI bus
and its wider and faster versions, PCI versions 2, 2.1 [27] and the PCI-X proposal [28].
Figure 8 demonstrates that the maximum processor bus frequency was raised at roughly
the same rate as the clock frequency of the processors.

2) Enhancing the memory subsystem:  Both higher clock frequencies and more efficient
microarchitectures demand higher bandwidth and reduced load-use latencies (the time
needed to use requested data) from the memory subsystem. There is a wide variety of
approaches to achieve these goals including (a) enhanced main memory components, such
as   FPM DRAMs, EDO DRAMs, SDRAMs, SLDRAMs, RDRAMs, DRDRAMs [29],  (b)
introducing and enhancing caches, first of all through improved cache organizations,
increasing number of cache levels, higher cache capacities, larger on-die cache portions
[30], [31] and (c) introducing latency reducing or hiding techniques, such as software or
hardware controlled data prefetching, [32], [33], lock-up free (non-blocking) caches, out-of
order loads, speculative loads etc, as outlined later in Section V.E.5.b. Since this evolution
is a topic of its own whose complexity is comparable to the evolution of the
microarchitectures, we do not go into details here, but refer to the literature given.

Here we note that the bandwidth of the level 2 cache (L2 cache) may strongly
impede system performance, first of all for small L1 caches. This is the reason for
changing the way that L2 caches are connected to the processor. While L2 caches of
previous models were coupled to the processor via the processor bus (for instance in the
Pentium), recent high performance processors such as the Pentium Pro, Pentium II and
Pentium III or AMD’s K6-3 usually provide a dedicated fast bus, called the backside
bus.

IV. INTRODUCTION OF TEMPORAL PARALLELISM AND ITS
RAMIFICATIONS

A. Overview of Possible Approaches to Introduce Temporal Parallelism

A traditional von Neumann processor executes instructions in a strictly sequential

manner as indicated in Figure 9.  For sequential processing n CPI, i.e. the average length
of the issue intervals (in cycles), equals the average execution time of the instructions in
cycles. In the figure n CPI = 4.  Usually, n CPI >>1.

Assuming a given ISA,  n CPI can be reduced by introducing some form of pipelined
instruction processing, in other words by making use of temporal parallelism. In this
sense n CPI reflects the extent of temporal parallelism in the instruction processing.
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Basically, there are three main possibilities to introduce temporal parallelism by
overlapping the processing of subsequent instructions; (a) overlap only the fetch phases
with the last processing phase(s) of the preceding instruction, (b) overlap the execute
phases of subsequent instructions processed in the same execution unit (EU) by means
of pipelined execution units, or (c) overlap all phases of instruction processing by
pipelined instruction processing, as shown in Figure 9. In the figure the arrows represent
instructions to be executed. For illustration purposes we assume that instructions are
processed in four subsequent phases, called the Fetch (F), Decode (D), Execute (E) and
Write (W) phases.

Mainframes

Microprocessors

Introduction of temporal parallelism
(Reduction of            )

Sequential
processing

Overlapping the fetch
 and further phases

Overlapping the execute
phases through pipelining

Overlapping 
all phases

ii

+1ii

+3ii

+2ii

E E E1 2 3

ii +1ii
F D E W F D E Wii

+1ii F D E W

+2ii

ii

+1ii

+3ii

+2ii

F E WD

Early
mainframes

Prefetching Pipelined
processors

Pipelined
EUs

nCPI

i80286    (1982)
39

M68020    (1985)40

Stretch    (1961)34 IBM 360/91   (1967)
CDC 7600    (1969) 

35

36
Atlas   (1963)37

IBM 360/91   (1967)
38

R2000    (1988)
41

i80386    (1985)
42

M68030   (1988)43

F D

Figure 9: Main approaches to achieve temporal parallelism
(F: fetch phase, D: decode phase, E: execute phase, W: write phase)

The superscripts after the machine or processor designations are references to the related machines or
processors.

In this and subsequent figures the dates indicate the year of first shipment (in the case of mainframes)
or that of first volume shipment (in the case of microprocessors).

(a) Overlapping only the fetch phases with the last phase(s) of the proceeding
instruction is called prefetching, a term coined in the early days of computers [34].
Assuming that the processor overlaps the fetch phases with the write phases, as
indicated in Figure 9, this technique reduces the average execution time by one cycle
compared to fully sequential processing.  However, control transfer instructions (CTIs),
which divert instruction execution from the sequential path, make prefetched
instructions obsolete.  This lessens the performance gain of instruction prefetching to
less than one cycle per instruction.

(b) The next possibility is to overlap the execution phases of subsequent instructions
processed in the same EU by using pipelined execution units (EUs), [35], [36].
Pipelined EUs are able to accept a new instruction for execution in every new clock
cycle even if their operation latency is greater than one cycle, provided that no
dependencies exist between subsequent instructions. In this way, elements of vectors
can be processed in a more effective way than in sequential processing, typically
resulting in a considerable performance gain.
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(c) Finally, the ultimate solution to exploit temporal parallelism is to extend
pipelining to all phases of instruction processing, as indicated in Figure 9 [37], [38].
Fully pipelined instruction processing results in a one cycle mean time between
subsequent instructions ( n CPI = 1) provided that the instructions processed are free of
dependencies.  The related processors are known as pipelined processors, and include
one or more pipelined EUs.  We note that the execution phase of some instructions,
such as division or square root calculation, is not pipelined in spite of pipelined
instruction processing for implementation efficiency. This fact and occurring

dependencies between subsequent instructions cause a slight increase of n CPI during
real pipelined instruction processing.

Pipelined processors ushered in the era of instruction level parallel processors, or
ILP processors for short. In fact, both prefetching and overlapping of the execution
phases of subsequent instructions provide already a kind of partial parallel execution.
Nevertheless, processors providing these techniques alone are usually not considered to
be ILP processors.

Different forms of temporal parallelism were introduced into mainframes in the early
1960s (see Figure 9). In microprocessors, prefetching arrived two decades later with the
advent of 16-bit micros [39], [40]. Subsequently, because of their highest performance
potential among the alternatives discussed, pipelined microprocessors emerged [41] -
[43] and came into widespread use in the second half of the 1980s, as shown in Figure
10.  Thus, pipelined microprocessors constitute the first major step in the evolution of
prevailing microprocessors. Here we note that the very first step of the evolution of
microprocessors was marked by increasing the word length from 4 bits to 16 bits, as
exemplified by the Intel processors 4004, [44], 8008, 8080 and 8086 [45]. This
evolution gave rise to the introduction of a new ISA for each wider word length until
16-bit ISAs arrived. For this reason we discuss the evolution of the microarchitecture of
microprocessors beginning with 16-bit processors.

x86

M68000

MIPS R

1980 81 82 83 84 85 86 87 88 89 1990 91 92

80386 80486

68030 68040

R3000 R6000 R4000

pipelined processors

R2000

68020

80286

Figure 10: The introduction of pipelined microprocessors

C. Implications of the Introduction of Pipelined Instruction Processing

1) Overview: Pipelined instruction processing calls for a higher memory bandwidth
and for an engineous processing of CTIs (control transfer instructions), as detailed
subsequently. Thus, in order to avoid processing bottlenecks, two new techniques also
needed to be introduced; caches and speculative branch processing.
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2) The demand on higher memory bandwidth and the introduction of caches: If
subsequent instructions are not dependent on each other a pipelined processor will fetch
a new instruction in every new clock cycle. This requires a higher memory bandwidth
for fetching instructions compared to sequential processing. Furthermore, due to the
overlapped processing of instructions load and store instructions occur more frequently
as well. Also in the case of memory architectures the processor needs to read and write
more frequently memory operands. Consequently, pipelined instruction processing
requires a higher memory bandwidth for both instructions and data. As the memory is
typically slower than the processor, the increased memory bandwidth requirement of
pipelined instruction processing accelerated and made inevitable the introduction of
caches, an innovation pioneered in the IBM 360/85 [46] in 1968. With caches,
frequently used program segments (cycles) could be held in a fast memory, which
allows instruction and data requests to be served at a higher rate. Caches came into
widespread use in microprocessors in the second half of the 1980s, in essence, along
with the introduction of pipelined instruction processing (see Figure 11). As the
performance of microprocessors is increasing by a rate of about two orders of
magnitude per decade (see Section A), there is a continuous demand to raise the
performance of the memory subsystem as well. For this reason the development of
caches and of their connection to the processor has remained one of the focal points of
the evolution of microprocessors for more than one decade.

x86

M68000

MIPS R

1980 81 82 83 84 85 86 87 88 89 1990 91 92

80386 80486

68030 68040

R3000 R6000 R4000

C(8),Spe

C(1/4,1/4) C(4,4),Spe

C(4,4) C(4,4) C(16) C(8,8),Spe

pipelined (scalar ILP)

C(n) cache (universal cache, size in kB)

C(n/m) cache (instruction/data cache, size in kB)

Spe Speculative execution of branches

C(0,1/4)

R2000

68020

80286

Figure 11: The introduction of caches and speculative branch processing

3) Performance degradation caused by CTIs and the introduction of speculative
branch processing: The basic problem with pipelined processing of CTIs is that if the
processor executes CTI’s in a straightforward way, by the time it recognizes a CTI in
the decode stage, it has already fetched the next sequential instruction.  If, however, the
next instruction to be executed is the branch target instruction rather than the next
sequential one, the already fetched sequential one needs to be canceled. Thus, without
any countermeasures, pipelined instruction processing gives rise to at least one wasted
cycle, known as bubble, for each unconditional CTI.

Conditional CTIs can cause even more wasted cycles.  Consider that for each
conditional CTI the processor needs to know the specified condition prior to deciding
whether to issue the next sequential instruction or to fetch and issue the branch target
instruction. Thus, each unresolved conditional branch would basically lock up the issue
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of instructions until the processor can decide whether the sequential path or the branch
target path needs to be followed. Consequently, if a conditional CTI refers to the result
of a long latency instruction, such as a division, dozens of wasted cycles will occur.

 Speculative execution of branches or briefly speculative branching [47] – [50] can
remedy this problem. Speculative branching means that the microarchitecture has a
branch predictor that makes a guess for the outcome of each conditional branch and
resumes fetching and issuing instructions along the guessed path. In this way
conditional branches do not more block instruction issue, as demonstrated in Figure 12.
Notice that in the figure the speculation goes only until the next conditional branch.

Instructions other than conditional branches
Conditional branches

Basic

block

Basic

block

quessed path

The processor makes a guess
for the outcome of the branch

and keeps on issuing instructions
along the guessed path.

The processor waits for the
resolution of the speculation made.

If the guess was correct, it
resumes instruction issue, else

it cancels all instructions executed
and resumes execution along

the alternative path.

Figure 12: The principle of speculative execution assuming speculation along a single conditional branch

Later, when the specified condition becomes known, the processor checks whether it
guessed right. In response to a correct guess it acknowledges the instructions processed.
Otherwise it cancels the incorrectly executed instructions and resumes the execution
along the correct path.

In order to exploit the intrinsic potential of pipelined instruction processing designers
introduced both caches and speculative branch processing about the same time, as
Figure 12 demonstrates.

4) Limits of utilizing temporal parallelism: With the massive introduction of
temporal parallelism into instruction processing, the average length of the issue
intervals can be decreased to almost one clock cycle. But n CPI = 1 marks the limit
achievable through temporal parallelism. A further substantial increase in performance
needs the introduction of additional parallelism in the instruction processing along a
second dimension as well. There are two possibilities for this: either to introduce issue
parallelism or intra-instruction parallelism. Following the evolutionary path, we first
discuss the former.
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V. INTRODUCTION OF ISSUE PARALLELISM AND ITS RAMIFICATIONS

A. Introduction of Issue parallelism

Issue parallelism, also known as superscalar instruction issue [51] [5], [52], refers to
the issuing of multiple decoded instructions per clock cycle by the instruction fetch/decode
part of the microarchitecture for further processing. The maximum number of instructions
issued per clock cycle is called the issue rate (ni).

 We note that in expression (3), which identifies the components of processor
performance, issue parallelism is expressed by the average number of instructions issued
per issue interval ( n ILP) rather than by the average number of instructions issued per cycle
( n IPC). Assuming pipelined instruction processing and superscalar issue, however, the
average length of the issue intervals ( n CPI) approaches one cycle. Thus, in expression (3)
n ILP equals roughly the average number of instructions issued per cycle ( n IPC).

Issue parallelism is utilized by superscalar processors. They appeared after designers
exhausted the full potential of pipelined instruction processing to boost performance,
around 1990. Due to their higher performance, superscalars rapidly became predominant in
all major processor lines, as Figure 13 shows.

Intel 960 960KA/KB 960CA (3)

M 88000 MC 88100 MC 88110 (2)

HP PA PA 7000 PA7100 (2)

SPARC MicroSparc SuperSparc (3)

Mips R R 4000
1,2 R 8000 (4)

Am 29000 29000 sup (4)
29040

IBM Power Power1(4)
RS/6000

DEC α α21064(2)

PowerPC PPC 601 (3)
PPC 603 (3)

87 88 89 90 91 92 93 94 95 96

CISC processors

RISC processors

Intel x86 i486 Pentium(2)

M 68000 M 68040 M 68060 (2)

Gmicro Gmicro/100p Gmicro500(2)

AMD K5 K5 (4)

CYRIX M1 M1 (2)

1 We do not take into account the low cost R 4200 (1992) since superscalar architectures are intended to extend the performance of the high-end models of a particular line.
2 We omit processors offered by other manufactures than MIPS Inc., such as the R 4400 (1994) from IDT, Toshiba and NEC.

denotes superscalar processors.
The figures in brackets denote the issue rate of the processors.

Figure 13: The appearance of superscalar processors

B. Overall implications of superscalar issue

Compared to pipelined instruction processing, where the processor issues at most one
instruction per cycle for execution, superscalars issue up to ni instructions per cycle, where ni

is the issue rate, as illustrated in Figure 14. As a consequence, on the average superscalars

need to fetch n IPC times more instructions and memory data and need to store n IPC-times
more memory data per cycle (tc) than pipelined processors. To put it another way,
superscalars need a higher memory bandwidth than pipelined processors even assuming the
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same clock frequency. As the clock frequencies of the processors are rapidly increasing as
well (see Figure 6), superscalars need an enhanced memory subsystem compared to those
used with earlier pipelined processors, as already emphasized in connection with the main
road of the evolution in Section III.B.2.

Pipelined
instruction processing

instruction processing
Superscalar

(n  =3)i

t

t
tc

Figure 14: Contrasting pipelined instruction processing with superscalar processing
(The arrows indicate instructions)

Superscalar issue also impacts branch processing. There are two reasons for this. First,
with superscalar instruction issue branches occur on the average n IPC-times more frequently
than with pipelined processing. Second, each wasted cycle that arises during branch
processing can restrict multiple instructions from being issued. Consequently, superscalar
processing needs a more accurate branch speculation or in general a more advanced branch
handling than is used with pipelined processing. Moreover, as we will point out later in this
section, one of the preconditions for increasing the throughput of superscalar processors is to
raise the sophistication of their branch handling subsystem. For an overview of the evolution
achieved in this respect we refer to [49], [53] - [55].

C. The Direct Issue Scheme and the Resulting Issue Bottleneck

1) The Principle of the Direct Issue Scheme: For issuing multiple instructions per cycle
early superscalars typically used some variants of the direct issue scheme in conjunction with
a simple branch speculation [52]. Direct issue means that after decoding, executable
instructions are issued immediately to the execution units (EUs), as shown in Figure 15. This
scheme is based on an instruction window (issue window) whose width equals the issue rate.
The window is filled with instructions from the last entries of the instruction buffer. The
instructions held in the window are then decoded and checked as to they are dependent on
instructions still being executed. Executable instructions are issued from the instruction
window directly to free EUs. Dependent instructions remain in the window. Variants of this
scheme differ on two aspects: how the window is filled and how dependencies are handled
[49], [52].
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(a): Simplified structure of a superscalar microarchitecture                           (b): The issue process
       that employs the direct issue scheme and has an issue rate of three

Figure 15: Principle of the direct issue scheme

In Figure 15b we demonstrate how the direct issue scheme works assuming an issue rate
of three and the following variant of the basic scheme. (a) The processor issues instructions
in order, meaning that a dependent instruction blocks the issue of subsequent not dependent
instructions from the window, and (b) the processor needs to issue all instructions from the
window before refilling it from the instruction buffer with the subsequent instructions.
Examples of processors that issue instructions in this way are the Power1, the PA7100, and
the SuperSparc. In one demonstration of this operations principle we take it for granted that
in cycle ci the instruction window is filled with the last three entries of the instruction buffer
(instructions i1 – i3). We also suppose that in cycle ci instructions i1 and i3 are free of
dependencies but i2 depends on instructions which are still in execution. Given this, in cycle
ci only instruction i1 will be issued. Both i2 and i3 will be withheld in the window since i2 is
dependent and blocks the issue of any following instruction. Let us assume that in the next
cycle (ci+1) i2 becomes executable. Then in cycle ci+1 instructions i2 and i3 will be issued for
execution from the window. In the next cycle (ci+2) the window is refilled with the
subsequent three instructions (i4-i6) and the issue process resumes in a similar way.

2) The Resulting Issue Bottleneck: In the direct issue scheme all data or resource
dependent instructions occurring in the instruction window block instruction issue. This fact
restricts the average number of issued instructions per cycle (n IPC) to about two in general
purpose applications [56], [57]. Obviously, when the microarchitecture is confined to issue
on the average not more than about two instructions per cycle, its throughput is also limited
to about two instructions per cycle, no matter how wide the microarchitecture is.
Consequently, the direct issue scheme leads to an issue bottleneck, which limits the
maximum throughput of the microarchitecture.

3) The Throughput of Superscalar Microarchitectures That Use the Direct Issue Scheme:

From the point of view of the throughput (n IPC) the microarchitecture may be viewed roughly
as a chain of subsystems that are linked together via buffers. Instructions are processed in a
pipelined fashion as they flow through the chain of these subsystems, the kind and number of
which depend on the microarchitecture in question. Typical subsystems fetch, decode and/or
issue, execute as well as retire (i.e. complete in program order) instructions.
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A simplified execution model of a superscalar RISC processor that employs the direct
issue scheme is shown in Figure 16 below. The front end of the microarchitecture consists of
the fetch and decode subsystem. Its task is to fill the instruction window.

Instruction
cache

Instruction
window

Execute

Retire

Execute rate

Load data

Data cache
(Memory subsystem)

Fetch rate

Decode rate

Issue rate

Fetch

Decode

Store data

Architectural
register file

Register results

Reg. ops.Issue

Front end

Back end

Retire rate

Figure 16: Simplified execution model of a superscalar RISC processor that employs direct issue

The window is depleted by the back end of the microarchitecture that includes the issue,
execute and retire subsystems. In each cycle some instructions in the window are available
for parallel execution, others are locked by dependencies. As EUs finish the execution of
instructions, existing dependencies become resolved and formerly dependent instructions
become available for parallel execution. Clearly, a crucial point for the throughput of the
microarchitecture is the number of instructions that are available for parallel execution in the
instruction window per cycle. The issue subsystem forwards not dependent instructions from
the instruction window for execution. Needed register operands are supplied from the
architectural register file to the EUs, which constitute the execution subsystem. Executed
instructions are completed in program order and the results generated are sent either to the
architectural register file or to the memory.

Compared to RISC processors, advanced CISCs usually differ in that they convert CISC
instructions into internal simple, RISC-like operations. Called differently in different
processor lines  (e.g. µops in Intel’s Pentium Pro and subsequent models, RISC86 operations
in AMD’s K5 - K7, ROPs in Cyrix’s M3) these internal operations are executed by a RISC
kernel. The retire subsystem is then responsible for a reconversion by completing those
internal operations, which are part of the same CISC instruction, conjointly.

Each of the above subsystems mentioned has a maximum throughput (bandwidth) in terms
of the maximum number of instructions that can be processed per second. Instead of
maximum throughput however, it is often more expressive to speak of the width of a
subsystem, which reflects the maximum number of instructions that can be processed per
cycle. The width of the fetch, decode, issue execute and retire subsystems is given by the
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fetch rate, the decode rate, the issue rate, the execution rate and the retire rate, respectively, as
indicated in Figure 16. In this sense, the term width of the microarchitecture roughly
characterizes the width of the whole microarchitecture despite the fact that the widths of its
subsystems may differ. This is analogous to the notion of “word length of a processor”,
which indicates the characteristic or the maximum length of the data processed.

In fact, the maximum throughput (or width) of a subsystem indicates only its performance
potential. When running an application, subsystems have actually less throughput, since they
usually operate under worse than ideal conditions. For instance, branches decrease the
throughput of the fetch subsystem, or the throughput of the execute subsystem depends
strongly on what extent parallel executable instructions in the window can find needed
hardware resources (EUs) from one cycle to the next. In any application, the smallest
throughput of any subsystem will be the bottleneck that determines the resulting throughput
of the whole microarchitecture.

As pointed out above, the direct issue scheme causes an issue bottleneck that restricts the
average number of instructions that are available for parallel execution in the instruction
window per cycle to about two instructions per cycle in general purpose applications. In
accordance with this restriction, early superscalars usually have an issue rate of two to three
(as indicated in Figure 13). Consequently, their execution subsystem typically consists of
either two pipelines (Intel’s Pentium, Cyrix’s M1) or of two to four dedicated pipelined EUs
(such as e.g. in DEC’s Alpha 21064 (now Compaq)).

In order to raise the throughput of the microarchitecture, designers of subsequent
microprocessors needed to remove the issue bottleneck and at the same time to increase the
throughput of all relevant subsystems of the microarchitecture. In the subsequent section we
focus on the first topic, and deal with the second issue in Section E.

D. Basic Techniques Introduced to Remove the Issue Bottleneck and to Increase the
Number of Parallel Executable Instructions in the Instruction Window.

1) Overview: The issue bottleneck can be addressed basically by the use of shelving.
However, in order to effectively capitalize on this technique, shelving is usually augmented
by two additional techniques: speculative execution of branches, and register renaming.

2) Shelving: The basic technique used to remove the issue bottleneck is instruction
shelving, also known as dynamic instruction issue [4], [5], [58]. Shelving presumes the
availability of dedicated buffers, called shelving buffers, in front of the EUs as shown e.g. in
Figure 171. With shelving the processor first issues the instructions into available shelving
buffers without checking for data- or control dependencies or for busy EUs. As data
dependencies or busy execution units no longer restrict the flow of instructions, the issue
bottleneck of the direct issue scheme is removed.

With shelving the processor is able to issue in each cycle as many instructions into the
shelving buffers as its issue rate (which is usually 4), provided that no hardware restrictions
occur. Possible hardware restrictions include missing free shelving buffers or limited
datapath width. Nevertheless, in a well-designed microarchitecture the hardware restrictions
mentioned will not severely impede the throughput of the dispatching subsystem. Issued
instructions remain in the shelving buffers until they become free of dependencies and can be
dispatched for execution.

                                                          
2 Here we note that in addition to the individual shelving buffers indicated in Figure 17, there are a number of
other solutions to implement shelving, as discussed e.g. in [49], [58]. For instance, Intel’s Pentium Pro, Pentium
II and Pentium III use a centralized (shared) reservation station.
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Figure 17: The principle of shelving assuming that the processor has individual shelving buffers (called
reservation stations) in front of the execution units.

Shelving improves the throughput of the front end of the microarchitecture not only by
removing the issue bottleneck of the direct issue scheme but also by significantly widening
the instruction window. Under the direct issue scheme the processor tries to find executable
instructions in a small instruction window, whose width equals its issue rate (usually 2 - 3).
In contrast, with shelving the processor scans all shelving buffers for executable instructions.
In this way the width of the instruction window is determined by the total capacity of all
shelving buffers available, while its actual width equals the total number of instructions held
in the window, which may change dynamically from one cycle to the next. As processors
usually provide dozens of shelving buffers, shelving typically greatly widens the instruction
window compared to the direct issue scheme. Since in a wider window the processor will
find on the average more parallel executable instructions per clock cycle than in a smaller
one, shelving also additionally increases the throughput of the front end of the
microarchitecture.

3) More Advanced Speculative Branching: Wide instruction windows, however, call for
speculation along multiple conditional branches, called deep speculation, in order to avoid
the stalling of instruction issue due to multiple consecutive conditional branches. But the
deeper branch speculation is, i.e. the more consecutive branches a guessed path may involve,
the higher the penalty for wrong guesses in terms of wasted cycles. As a consequence,
shelving typically requires deep speculation and a highly accurate prediction. For this
reason, the design of effective branch prediction techniques has been one of the corner stones
in the development of high performance superscalars. For more details of advanced branch
speculation techniques we refer to the literature [53] - [55].

4) Register Renaming: This is another technique used to increase the efficiency of
shelving. Register renaming removes false data dependencies, i.e. write after read (WAR)
and write after write (WAW) dependencies, between register operands of subsequent
instructions. If the processor employs renaming, it allocates to each destination register a
rename buffer that temporarily holds the result of the instruction. It also tracks actual register
allocations, fetches source operands from renamed and/or architectural registers, writes the
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results from the rename buffers into the addressed architectural registers and reclaims rename
buffers that are no longer needed [4], [5], [49].

The processor renames the destination and source registers of the instructions during
instruction issue. As renaming removes all false register data dependencies between the
instructions held in the instruction window, it considerably increases the average number of
instructions in the instruction window that are available for parallel execution per cycle.

Figure 18 tracks the introduction of shelving and renaming in major superscalar lines. As
indicated, early superscalars typically made use of the direct issue scheme. A few subsequent
processors introduced either renaming alone (like the PowerPC 602 or the M1) or shelving
alone (such as the MC88110, R8000). But, in general shelving and renaming emerged
conjointly in a “second wave” of superscalars, around the middle of the 1990s.
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renaming and speculative branching
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Issue schemes used in major superscalar lines

R 10000 (1996)
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 The R8000 shelves only FP instructions.1

 The MC88110, shelves only load/store instructions.2

Figure 18: Introduction of shelving and renaming into superscalars

5) The Throughput of Superscalar Microarchitectures That Use Shelving and Renaming:
RISC processors providing shelving and renaming are usually four instructions wide in
design. This means that their fetch rate, decode rate, rename rate, dispatch rate and retire rate
all equal four instructions per cycle.

In Figure 19 we show a simplified execution model of superscalar RISC processors that
use shelving and renaming. In this model the front end of the microarchitecture includes the
fetch, decode, rename and dispatch subsystems. It feeds instructions into the shelving buffers,
which constitute the instruction window.
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Figure 19: Simplified execution model of a superscalar RISC processor that employs both shelving and
renaming

Executable instructions are dispatched from the window to available EUs. Required
register operands are supplied either during instruction issue or during instruction dispatch.
Register results and fetched memory data are forwarded to the rename registers, which
temporarily hold all register results. Finally, executed instructions are retired in program
order. At this stage register results are copied from the rename registers to the corresponding
architectural registers and memory data are forwarded to the data cache in program order.

 We note that the dispatch rates are typically higher than the issue rates as indicated in
Figure 19. In most cases they amount to five to eight instructions per cycle (see Table 1).
There are two reasons for this; (a) to sustain a high enough execution bandwidth despite
complex instructions with repetition rates of more than one cycle (like division, square root
etc.), and (b) to provide enough execution resources (EUs) for a wide variety of possible
mixes of dispatched instructions. The execution rates are usually even higher then the
dispatch rates because multiple multi-cycle EUs often share the same issue bus (that excludes
the issue of multiple instructions per cycle to them) but they can operate simultaneously.
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Processors/year of
volume shipment

Issue rate
(instr./cycle)

Dispath rate a

(instr./cycle)

PowerPC 603 (1993) 3 3

PowerPC 604 (1995) 4 6

Power2 (1993) 4/6
b

10

Nx586 (1994) 3/4
c,d

3/4
c,d

K5 (1995) 4
d

5
d

PentiumPro (1995) 4

PM1 (Sparc 64) (1995) 4

5 d

8

PA8000 (1996) 4 4

R10000 (1996) 4 5

Alpha 21264 (1998) 4 6

a  Because of address calculations performed separately, the given numbers
are usually to be interpreted as operations/cycle. For instance, the Power2
performs maximum 10 operations/cycle, which corresponds to 8 instr./cycle.b 
The issue rate is 4 for sequential mode and 6 for target mode.

c 
Both rates are 3 without an optional FP-unit (labelled Nx587) and 4 with it.

d 
Both rates refer to RISC operations (rather than to the native CISC
operations) performed by the superscalar RISC core.

Comparison of issue and issue rates of recent superscalar processors

Table 1: Issue and dispatch rates of superscalar processors

As far as advanced CISC processors with shelving and renaming are concerned, they
typically decode up to three CISC instructions per clock cycle, and usually include an internal
conversion to RISC-like operations, as discussed earlier. As x86 CISC instructions generate
on the average about 1.2-1.5 RISC like instructions [59], the front end of advanced CISC
processors have roughly the same width than that of advanced RISC processors in terms of
RISC like operations.

It is interesting to consider how the introduction of shelving and renaming contributes to
increasing the efficiency of microarchitectures. In Figure 20 we show the cycle by cycle
relative performance of processors in terms of their SPECint95 scores, standardized to 100
MHz. Designs using shelving and renaming are identified by framed processor designations.
As this figure demonstrates, superscalars providing shelving and renaming have a true
advantage over microarchitectures using direct issue. In this respect comparable models are
e.g. Pentium vs. PentiumPro, PowerPC601 vs. PowerPC604, PA7100 vs. PA8000, R8000
(which shelves only FP instructions) and R10000 or Alpha 21064 vs. Alpha 21264. These
comparisons are slightly distorted by the fact that shelved designs are typically wider than
microarchitectures with direct issue. In order to include this aspect, in Figure 20 we also
indicate the issue rates of the processors in brackets after the processor designations.

We note that the UltraSparc family of superscalars is the only line that has not yet
introduced shelving and renaming. In order to reduce time-to-market, designers ruled out a
shelved design at the beginning of the design process [60]. This restricts the cycle by cycle
throughput of the UltraSparc line well below comparable advanced RISC designs which
employ both shelving and renaming (such as the R12000, PA 8200, PA8500 or the Alpha
21264).
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Figure 20: Efficiency of microarchitectures

Finally, we point out one important characteristic of the internal operation of superscalars
that use shelving, renaming and speculative branch processing. If all these are used, only
RAW dependencies between register data and memory data dependencies restrict the
processor from executing instructions in parallel from the instruction window, not counting
any obvious hardware limitations. Consequently, the microarchitecture executes instructions
with register operands (and literals) internally according to the dataflow principle of
operation. For these instructions basically producer-consumer type register data
dependencies build the dataflow limit of execution.

E. Approaches to Further Increase the Throughput of Superscalar Microarchitectures

1) Overview: Further raising the throughput of the microarchitecture is a real challenge, as
it requires a concerted enhancement of all subsystems involved. This usually requires
numerous iterative cycle by cycle simulations of a number of benchmark applications to
discover and remove bottlenecks from the microarchitecture.

Beyond shelving and renaming, there are a number of noticeable techniques that have
been used or proposed to increase the throughput of particular subsystems.

2) Increasing the Throughput of the Instruction Fetch Subsystem: Ideally, the instruction
fetch subsystem supplies instructions for processing at the fetch rate.  However, some
occurrences, for example unconditional or conditional branches or cache misses, may
interrupt the continuous supply of instructions for a number of cycles.  Designers introduced
a handful of advanced techniques to cope with these challenges, including (a), more intricate
branch handling schemes, as already discussed, (b) diverse techniques to access branch target
paths as quickly as possible, using Branch History Tables, Branch Target Buffers, Subroutine
Return Stacks etc. [49], and (c) various instruction fetching schemes to reduce the
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impediments of cache misses [33]. Current processors improve the throughput of the fetch
subsystem by continuously refining these techniques.

3) Increasing the Throughput of the Decode Subsystem: With superscalar instruction issue,
decoding becomes considerably more complex than in the scalar case since multiple
instructions now need to be decoded per cycle. Moreover, assuming shelving and renaming,
decoding is just one part of a time critical path, which consists of decoding, renaming and
dispatching of the instructions. Along this path a variety of checks need to be carried out to
see whether there are enough empty rename or shelving buffers, or whether required buses
are wide enough to forward multiple instructions into the same buffer, etc. As a consequence,
higher dispatch rates (rates of 3 or higher) can unduly lengthen the time critical path. This
would either give rise to a lower clock frequency or to additional clock cycles, which
increases the penalty for mispredicted branches. An appropriate technique to remedy this
problem is predecoding [49].

The fundamental idea behind predecoding is to perform partial decoding already when the
processor fetches instructions into the instruction buffer, as indicated in Figure 21.
Predecoding may include identifying the instruction type, recognizing branches, determining
the instruction length (in the case of a CISC-processor), etc.

Typically 128 bits/cycle

E.g.148 bits/cycle usually

Second-level cache
(or memory)

Predecode
unit

I-cache

When instructions are written into the

I-cache, the predecode unit appends

4-7 bits to each RISC instruction 

Figure 21: The basic idea of predecoding

Predecoding emerged with the second wave of superscalars about the middle of the 1990s
and soon became a standard feature in RISC processors. We note that the introduction of
predecoding into CISC processors is not so imperative as it is in the case of RISC processors
for two reasons. First, CISC processors typically have a lower issue rate than RISC
processors (mostly three in recent CISC processors). Second, they usually include an internal
conversion into RISC-like operations as discussed earlier. This conversion decouples
decoding and instruction issue, reducing the complexity of the decode task. We must add that
trace processors, a kind of thread level parallel processors, also predecode instructions to
remove complexity out of the time critical decode-rename-dispatch path [10] - [12].

4) Increasing the Throughput of the Dispach Subsystem: In order to increase the
throughput of the dispatch subsystem either the issue rate needs to be raised or the instruction
window needs to be widened.

(a) Raising the dispatch rate is the brute force solution to increase the throughput of the
dispatch subsystem. It presumes more execution resources, such as EUs, datapaths etc. and
logic for checking executable instructions in the window. For an overview of the dispatch
rates of superscalars see Table 1.
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(b) Widening the instruction window is a more subtle approach to raise the throughput of
the dispatch subsystem. It is based on the fact that in a wider instruction window the
processor will obviously find more instructions for parallel execution per cycle than in a
smaller one. For this reason recent processors typically have wider instructions windows by
providing more shelving buffers than preceding ones, as shown in Table 2. However, a wider
window also requires deeper and more accurate branch speculation, as we emphasized earlier.

Processor
Width of the
instr. window

RISC processor

CISC processor

3

12

12

15

42

36

20

48

56

35

20

48

20

24

54

56

56

PowerPC 603 (1993)

PowerPC 604 (1995)

PowerPC 620 (1996)

Power3 (1998)

PA8500 (1999)

PA8000(1996)

Alpha 21264 (1998)

PM1 (Sparc64) (1995)

R10000 (1996)

K5 (1995)

K6 (1996) 

K7 (1998)

Nx586 (1994)

M3 (2000)

Pentium II (1997)

PentiumPro (1995)

R12000 (1998)

Table 2: The width of the instruction window in superscalar processors that use shelving

Finally, we note that powerful parallel optimizing compilers also contribute to an increase
in the average number of instructions that are available in the window for parallel execution
per cycle. Nevertheless, in our paper we focus on the microarchitecture itself and do not
discuss compiler issues.  Interested readers are referred to the literature [61] - [62].

5) Increasing the Throughput of the Execution Subsystem
Three major possibilities exist to increase the throughput of the execution subsystem; (a) to
raise the execution rate of the processor by providing more simultaneously operating EUs, (b)
to shorten the repetition rates of the EUs (i.e. the number of cycles needed until an EU
accepts a new instruction for execution), and (c) to shorten the execution latencies of the
instructions i.e. the number of cycles needed until the result of an instruction becomes
available for a subsequent instruction. Subsequently, we discuss only the last issue
mentioned.

As far as execution latencies are concerned, we emphasize that if shelving and renaming
are used, decoded, renamed and issued instructions wait for execution in the shelving buffers,
i.e. in the instruction window. Clearly, the earlier existing RAW-dependencies are resolved in
the instruction window, the more instructions will on average be available for parallel
execution on the average per cycle. This calls for shortening the execution latencies of the
instructions. Subsequently, we review techniques used or proposed either a) for register
instructions or b) for load/store instructions.
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 a) Basically two techniques are used to shorten the execution latencies of register
instructions, which are described below.

(i) Result forwarding is a widely used technique to shorten execution latencies of
instructions operating on register data. As Figure 22 shows, result forwarding provides a
bypass route from the outputs of the EUs to their inputs in order to make the results
immediately available for subsequent instructions. In this way execution latencies are
shortened by the time needed first to write the results into the specified destination register
and then to read them from there for a subsequent instruction.

EU

Reg. File

Inputs

From

Cache

Load forwarding

Result forwarding

Figure 22: The principle of result and load forwarding

Implementing result forwarding requires a large number of buses, as a separate bus is
needed from the output of each EU to the input to all EUs that may use it. Result forwarding
is now widely used in superscalars.

(ii) Exceeding the dataflow limit of execution in the case of long register operations, such
as division, by using intricate techniques like value prediction [63] - [66] or value reuse [67]
- [71]. This is now a major research topic.

b) Shortening the execution latencies of load/store instructions is a crucial point for
increasing the throughput of the microarchitecture for at least two reasons; first, load/store
instructions amount to about 25 – 35 % of all instructions [72]. Second, the memory
subsystem is typically slower than the processing pipeline. There are three major approaches
to addressing this problem; (i) to use load forwarding, (ii) to introduce out of order loads, and
(iii) to exceed the dataflow limit of execution caused by load operations.

 (i) Load forwarding is similar to result forwarding, described above. It shortens the load
latency (i.e. the time needed until the result of a load operation becomes available for a
subsequent instruction) by forwarding fetched data immediately to the inputs of the EUs, as
indicated in Figure 22. This technique is also widely used in current superscalars.

(ii)  Out of order execution of loads is a technique to bypass younger already executable
loads over elder, not yet executable ones. This technique effectively contributes to the
reduction of the impediments of load misses. Out of order execution of loads can be
implemented in a number of ways. Speculative loads (Power-PC 620, R10000, Sparc64,
Nx586), and store forwarding (Nx586, Cyrix’s 686 MX, M3, K-3, UltraSparc-3) are
implementation alternatives that are already employed in current processors, whereas
dynamically speculated loads [73] - [75] and speculative store forwarding [50] are new
alternatives that have been proposed.

(iii) It is also feasible to exceed the dataflow limit caused by load operations. Load value
prediction [50], [75] and load value reuse [85], [69], [75] are techniques proposed for this
reason.

6) Limits of Utilizing Issue Parallelism: Obviously, there is a practical limit beyond which
the width of the microarchitecture cannot be efficiently increased. This limit is set by the
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extent of instruction level parallelism available in programs. As general-purpose programs
exhibit an average instruction level parallelism of about 4 - 8 [77] and recent
microarchitectures already have a width of about four, there does not seem to be too much
room for a performance increase through a further widening the microarchitecture, at least for
general-purpose applications. Nevertheless, additional considerable performance increase
may be achieved at the instruction level for dedicated use by utilizing parallelism along the
third dimension, called the intra-instruction parallelism.

VI. Introduction of intra-instruction parallelism

A. Major Approaches to Introduce Intra-instruction Parallelism
Introducing intra-instruction parallelism as well, through including multiple data

operations into the instructions can boost processor performance further. This can be
achieved using one of three different approaches; (a) dual-operation instructions, (b)
SIMD-instructions and (c) VLIW-instructions, as indicated is Figure 23.

Dual-operation
instructions instructions

SIMD

-

instructions
VLIW

Possible approaches to introduce
intra-instuction parallelism

ISA-extension

OPI
n :  Average number of operations per instruction

Narrow
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Wide
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n

2 2/4/8/16 (2/3; for gen.use) (~n*10)
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(2-8; for DSPs)

(for gen.use)

Figure 23: Possibilities to introduce intra-instruction parallelism

(a) Dual-operation instructions as the name suggests, include two different data
operations in the same instruction. The most widely used one is the multiply-add
instruction (multiply-and-accumulate or fused multiply-add instruction), which
calculates the dot product (x = a * b + c) for floating-point data. Clearly, the
introduction of dual-operation instructions calls for an appropriate ISA extension.

 Multiply-add instructions were introduced in the early 1990s into the POWER [78],
PowerPC [79], PA-RISC [80] and MIPS-IV [81] ISAs and into the respective models.
The multiply-add instruction is effective only for numeric computations. Thus, in
general purpose applications they only marginally increase the average number of
operations per instruction ( n OPI).
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(b) SIMD instructions allow the same operation to be performed on more than one
set of operands. E.g. in Intel’s MMX multimedia extension [82], the

PADDW   MM1, MM2

SIMD instruction carries out four fixed point additions on the four 16-bit operand
pairs held in the 64-bit registers MM1 and MM2.

As Figure 23 indicates, SIMD instructions may be defined either for fixed point data
or for floating point data. Fixed point SIMD instructions support multimedia
applications, i.e. multiple (2/4/8/16) operations on pixels, whereas floating point SIMD
instructions accelerate 3D graphics by executing usually two floating point operations
simultaneously. Clearly, the introduction of SIMD instructions into a traditional ISA
requires an appropriate ISA extension.

 Fixed point SIMD instructions were pioneered in 1993-1994 in the processors
MC88110 and  PA-7100LC, as shown in Figure 24. Driven by the spread of multimedia
applications, SIMD extensions soon became a standard feature of most established
processor families (such as AltiVec from Motorola [83], MVI from Compaq [84],
MDMX from MIPS [85], MAX-2 from Hewlett-Packard [86], VIS from Sun [87] and
MMX from Intel [82]). Floating point SIMD extensions such as 3DNow from AMD,
CYRIX and IDT [88] and SSE from Intel [89] emerged in 1998 in order to support 3D
applications. They were implemented in the processors K6-2, K6-3 and Pentium III,
followed by the G4 and K7 as indicated in Figure 24.
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Figure 24: The emergence of FX-SIMD and FP-SIMD instructions in microprocessors
(The references to superscalar processors are given as superscripts behind the processor designations)
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Clearly, multimedia and 3D support will boost processor performance only in
dedicated applications. For instance, based on Media Benchmark ratings Intel stated a
per cycle performance gain of about 37 % in supporting multimedia for its Pentium II
over Pentium Pro [132]. Intel has also published figures showing that its Pentium III,
which supports 3D, has about 61% cycle by cycle performance gain over Pentium II
while running the 3D Lighting and Transformation Test of the 3D Winbench99
benchmark suite [133]. On the other hand, multimedia and 3D support results in only a
modest cycle by cycle performance gain for general-purpose applications. For instance,
Pentium II offers only a 3-5 % cycle by cycle performance increase over Pentium Pro,
whereas Pentium III shows a similarly slight cycle by cycle benefit over Pentium II in
terms of SPECint95 ratings [1].

(c) The third major possibility to introduce intra-instruction parallelism is the VLIW
(Very Long Instruction Word) approach. In VLIWs different fields of the same
instruction word control simultaneously operating EUs available in the
microarchitecture.  As a consequence, VLIW processors with a large number of EUs
need very long instruction words, hence the name.  For instance, Multiflow’s TRACE
VLIW machine used 256-bit to 1024-bit long instruction words to specify 7 to 28
simultaneous operations in the same instruction word [134].

Unlike superscalars, VLIWs are scheduled statically.  This means that the compiler
takes all responsibilities for resolving all types of dependencies.  To be able to do so,
the compiler needs intimate knowledge of the microarchitecture, specifically the
number, types, repetition rates, latencies of the EUs, load use latencies of the caches etc.
This results on the one hand in a complex and technology dependent compiler. On the
other hand, it also leads to reduced hardware complexity in contrast with comparable
superscalar designs.  In addition, the compiler is expected to perform aggressive parallel
optimization in order to find enough executable operations for high throughput.

VLIW proposals emerged as paper designs in the first half of the 1980s (Polycyclic
architecture [135], ELI-512 [136]), followed by two commercial machines in the second
half of the 1980s (Multiflow’s TRACE [134] and Cydrome’s Cydra-5 [137]). We
designate these traditional designs as wide VLIWs as they incorporate a large number of
EUs, typically, on the order of 10.

Wide VLIWs disappeared quickly from the market. This was in part due to their
deficiencies - technology sensitivity of their compilers, wasted memory fetch bandwidth
owing to sparsely populated instruction words etc. [4], as well as to the onus of their
manufacturers being start up companies.

The reduced hardware complexity of VLIW designs versus superscalar designs and
the progress achieved in compiler technology have led to a revival in VLIWs at the end
of the 1990’s for both DSP and general purpose applications. VLIW based DSPs are
intended for multimedia applications, such as Philip’s TM1000 TriMedia processors
[138], TI’s TMS320C6000 cores [139], the SC140 core from Motorola and Lucent
[140] and ADI’s TigerSharc [141]. With some justification these designs can be
designated as narrow VLIWs in contrast to earlier VLIW designs mentioned above.

General purpose narrow VLIWs with 3-4 operations per instruction are also
emerging, including Intel’s Itanium (alias Merced) [142], Sun’s MAJC processor units
used in their MCP chips [143] and Transmeta’s Crusoe processors [144], which have
become rivals of superscalars.

ISA extensions providing dual-operations or SIMD-instructions as well as DSP
oriented VLIWs are intended for dedicated applications, by contrast traditional wide
VLIWs and the latter mentioned narrow VLIWs are of general-purpose use. For general
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purpose applications only VLIWs are expected to carry out on the average considerably
more than one operation per instruction (nopi  >> 1).

VII. THE MAIN ROAD OF THE EVOLUTIONARY PATH

As pointed out before, increasing utilization of available instruction level parallelism
marks the main path of processor evolution. This has been achieved through the
introduction of one after another temporal, issue and intra-instruction parallelism (see
Figure 25).  This sequence has been determined basically by the objective to boost
performance while maintaining upward compatibility with preceding models.
Nevertheless, the price to pay for increased performance is the decreasing efficiency of
hardware utilization.

In this respect scalar pipelined processors, which use only temporal parallelism, led
to the best hardware utilization since in essence, all stages of their pipeline are involved
in the processing of instructions.  Superscalar processors, which use issue parallelism as
well, follow with somewhat lower hardware utilization due to the availability of
multiple (parallel) execution paths.  SIMD hardware extensions, which also enable the
exploitation of intra-instruction parallelism, are least utilized as they are used only for
MM and 3D applications.  To sum this up in another way, higher per cycle throughput
necessarily leads to higher hardware redundancy, as indicated in Figure 25.
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Sequential
Parallel processing

Traditional

von N. procs.
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parallelism
+ Intra-instruction

Superscalar processors

with MM/3D support

+ Issue
parallelism

Superscalar

processors

Temporal
parallelism

Pipelined

processors

processing

Figure 25: Main stages in the evolution of the microarchitecture of processors

We note that the history of microprocessors reveals a second possible evolutionary
scenario as well. This “revolutionary” scenario is characterized by only two consecutive
phases as opposed to the three that marks the evolutionary scenario, and has described
before, as Figure 26 indicates.
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Figure 26: Possible scenarios for the evolution of processors

Following this path, we see that the introduction of temporal parallelism was
followed by the debut of intra-instruction parallelism in the form of issuing VLIW-
instructions. Clearly, introducing multiple data operations per instruction instead of
multiple instructions per clock cycles is a competing alternative for boosting
throughput. In broad terms, the main path was chosen not for technological reasons but
because it allowed manufacturers to retain compatibility. The competing scenario
represents in a sense a rather revolutionary path, as the introduction of multi-operation
VLIW instructions demanded a completely new ISA. At the end of the 1980s this
alternative turned out to be a dead end for wide VLIWs.

VIII. CONCLUSIONS

The steady demand for higher processor performance has provoked the successive
introduction of temporal, issue and intra-instruction parallelism into processor
operation. Consequently, traditional sequential processors, pipelined processors,
superscalar processors and superscalar processors with multimedia and 3D support
mark subsequent evolutionary phases of microprocessors, as indicated in Figure 27.

On the other hand the introduction of each basic technique mentioned gave rise to
specific system bottlenecks whose resulution called for innovative new techniques.



33

Traditional sequential
processors

Pipelined
processors

branch proc.

Caches

Speculative

by pipelined
instruction processing

Introduction of
temporal parallelism

Advanced memory subsystem
Advanced branch processing

processors
Superscalar

by superscalar instr.
issue

Introduction of
issue parallelism

by SIMD - instructions

with MM/3D support
Superscalar processors

ISA extension

Introduction of
intra-instr. parallelism

Traditional sequential
processing

~ 1985/88 ~ 1990/93 ~ 1994/97

Shelving

Renaming

Raising the issue rate

Widening the
instruction window

Raising the execution
rate

Out of order execution
of loads (spec. loads,
store forwarding, etc.)

Exceeding the dataflow
limit of execution
(value prediction,
value reuse, load value
prediction, load value
reuse)

Raising the dispatch
rate

Enhancing the instr.
fetch subsystem
Enhancing the decode
 subsystem

Figure 27: Major steps in the evolution of microprocessors

Thus, the emergence of pipelined instruction processing stimulated the introduction of
caches and of speculative branch processing. The debut of superscalar instruction issue
gave rise to more advanced memory subsystems and to more advanced branch
processing. The desire to further increase per cycle performance called for avoiding the
issue bottleneck of the straightforward direct issue scheme by the introduction of shelving
and renaming. An additional performance increase press for a concerted enhancement of
all relevant subsystems of the microarchitecture, as outlined in the paper.  Finally, the
utilization of intra-instruction parallelism through SIMD instructions required an
adequate extension of the ISA. All in all, these decisive aspects constitute a framework,
which explains the sequence of major innovations encountered in the course of processor
evolution.

ANNEX
The throughput of the processor (Topc). To express the throughput of the processor

(TOPC) by the operational parameters of the microarchitecture, we assume the following
model of processor operation (see Figure 28).

In the figure the arrows indicate decoded instructions which have been issued for
processing.
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Figure 28: Assumed model of processor operation

(a) We take for granted that the processor operates in cycles, issuing in each cycle 0,
1...ni instructions, where ni is the issue rate of the processor.

(b) We allow instructions to include more than one operation.
(c) Out of the cycles needed to execute a given program we focus on those in which

the processor issues at least one instruction. We call these cycles issue cycles
and denote them by cj, j = 1...m. The issue cycles cj subdivide the execution time
of the program into issue intervals sj, j = 1...m such that each issue interval
begins with an issue cycle and lasts until the next issue cycle begins. s1 is the
first issue interval, whereas sm is the last one belonging to the given program.

(d) We describe the operation of the processor by a set of three parameters which are
given for each of the issue intervals sj., j = 1...m. The set of the chosen
parameters is as follows (see Figure 28):

nj
IPL  = the number of instructions issued at the beginning of the issue  interval sj,

j = 1...m,

n OPI = the average number of operations included in the instructions, which are
issued in the issue interval sj, j = 1...m,

nj
CPI  = the length of the issue interval sj in cycles, j = 1...m. Here nm

CPI, is the
length of the last issue interval, which is interpreted as the number of
cycles to be passed until the processor is ready to issue instructions again.

Then in the issue interval sj the processor issues nj
OPC operations per cycle, where:

n
n n

OPC
ILP OPI

n CPI

 *
j

j

j
j

(5)

Now let us consider nj
OPC to be a stochastic variable, which is derived from the

stochastic variables nj
ILP, n j

OPI and nj
CPI, as indicated in (5). Assuming that the

stochastic variables involved are independent, the throughput of the processor  (TOPC)
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that is the average value of nOPC ( n OPC), can be calculated from the averages of the
three stochastic variables included, as indicated below:

n =
OPC *

nn1/n
CPI ILP OPI* (5)T =OPC

Temporal
parallelism 

Issue
parallelism

Intra-instruction
parallelism
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